Tetrahedron Letters Vol. 21, pp 2817 - 2820 ©Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/0715-2817\$02.00/0

TOTAL SYNTHESIS OF (±)-NEOECHINULIN A, AN INDOLE ALKALOID CONTAINING OXIDIZED DIKETOPIPERAZINE¹

Shin-ichi NAKATSUKA,^{*} Hideki MIYAZAKI, and Toshio GOTO Department of Agricultural Chemistry, Nagoya University, Chikusa, Nagoya 464

Protected neocchinulin A (\underline{Z} isomer) and its \underline{E} isomer were synthesized by condensation of N-bis(methylthiomethyl)cyclo(Ala-Gly) with 2-(1,1dimethyl-2-propenyl)-1-methoxymethylindole-3-aldehyde; deprotection of both isomers gave neocchinulin A, whose \underline{Z} configuration was rigorously established. A novel cyclization of the protected neocchinulin A into a seven-membered cyclic compound was reported.

Neoechinulin A has been isolated from <u>Aspergillus ruber</u>^{2,3} and <u>Aspergillus amstelodami</u>.⁴ The structure was elucidated as <u>1</u>; <u>2</u> configuration of the 8,9-double bond being assumed, without rigorous establishment, from the chemical shift,⁴ solvent effects⁴ and ¹³C nmr signal⁵ of the vinyl proton. Inoue et al.⁶ synthesized neoechinulin (2a), and neoechinulin B (2b) and C (2c), but their method could not be applied for the synthesis of neoechinulin A (1). Recently Yonemitsu et al.⁷ achieved an elegant one-step synthesis of neoechinulin A by oxidation of a cyclo(Try-Ala) derivative with DDQ. This method, however, diminishes its value in its low yield (25%) and in necessity of a multi-step synthesis to obtain the starting

Neoechinulin A (1)

Neoechinulin (2a) $R=CH_2CH=C(CH_3)_2$, X=0 Neoechinulin B (2b) R=H, X=CH₂ Neoechinulin C (2c) $R=CH_2CH=C(CH_3)_2$, X=CH

2-(1,1-dimethy1-2-propeny1)tryptophan from 2-(1,1-dimethy1-2-propeny1)indole. Our synthetic strategy of neoechinulin A is the regiospecific aldol condensation⁸ of protected cyclo(Ala-Gly (6) with easily accessible 2-(1,1-dimethy1-2-propeny1)indole-3-aldehyde (3).

The indole-aldehyde⁹ \mathfrak{J} was treated with sodium hydride and chloromethyl methyl ether in dimethylformamide at room temp to give the methoxymethyl derivative \mathfrak{L} (75%), mp 60-61°C. Cyclo(L-Ala-Gly) (\mathfrak{L})was also protected by treatment of sodium hydride and chloromethyl methyl thioether in dimethylformamide at room temp to afford the (racemic)¹⁰ bis(methylthiomethyl) derivative \mathfrak{L} (70%), mp 86-87°C.

Regiospecific aldol condensation between $\frac{4}{2}$ and $\frac{6}{2}$ was achieved as follows: lithium diisopropylamide (1.2 eq) in tetrahydrofuran (THF) was added dropwise to the solution of $\frac{6}{2}$ in THF at -78°C, followed by addition of THF solution of $\frac{4}{2}$, and the mixture was warmed up to 0°C. After the addition of methanesulfonyl chloride (1.2 eq) the reaction mixture was allowed to stand at room temp for 1 h. The usual work-up and column chromatography on silica gel gave the $\frac{7}{2}$ isomer ($\frac{72}{2}$) (55%), mp 152-3°C, and $\frac{1}{2}$ isomer ($\frac{72}{2}$) (5%), mp 165-6°C, of the protected neoechinulin A. Stereochemistry of $\frac{72}{2}$ and $\frac{72}{2}$ was rigorously established chemically; by the following reaction $\frac{72}{2}$, but not $\frac{72}{2}$, afforded the novel cyclic compound $\frac{9}{2}$.

 $\chi_2^{\rm Z}$ was treated with CH₃I in the presence of NaHCO₃ in aq acetone at 40°C for 3 days. The reaction mixture was filtered and dried up <u>in vacuo</u>.¹⁶ The residue was dissolved in dioxan and heated at 100°C for 1 h. Chromatography on silica gel gave 1-methoxymethyl-necechinulin A (<u>8Z</u>), mp 223-4°C (60%) [nmr (CDCl₃) 7.22 ppm (1H, s, H-8)], and the cyclic compound $\frac{9}{2}$ (32%), amorphous. The structure of $\frac{9}{2}$ was confirmed by acid hydrolysis with aq formic acid (1:1) to crystalline $\frac{10}{10}$ (72%), mp 131-3°C (sealed tube) [m/e 335 (M⁺); nmr (CD₃OD) ppm 1.33 (3H, d, J= 7 Hz), 1.60 (6H, s), 4.02 (1H, q, J=7), 4.80 (1H, d, J=15), 4.86 (1H, d, J=15), 5.05-5.25 (2H, m), 6.15 (1H, dd, J=10 and 18), 6.88 (1H, br.d, J=7), 7.63 (1H, s)]. In the same reaction condition $\chi_{\rm E}$ gave only <u>&E</u> (70%), glass [nmr (CDCl₃) 6.30 ppm (1H, s, H-8)], and $\frac{9}{2}$ was not detected in the reaction mixture.

Hydrolysis of both <u>82</u> and <u>8E</u> with aq formic acid (1:1) at room temp for 2 h afforded the same (±)-neoechinulin A (1) (90% from both isomers), mp 260°C (sealed tube, decomp.);¹⁸ the <u>E</u> isomer of neoechinulin A was not detected even under irradiation of visible light. The spectral data (nmr, uv, and ir) as well as mp of the synthetic 1 are identical with those of natural neoechinulin A.^{3, 17} The stereochemistry of the double bond in 1 was confirmed by

Clavicipitic acid (11)

comparison of the chemical shift of the vinyl proton with that of \underline{Z} and \underline{E} isomers of \mathfrak{g} [1: 7.15 ppm; $\underline{\mathfrak{R}}\underline{Z}$: 7.22 ppm; $\underline{\mathfrak{R}}\underline{E}$: 6.30 ppm (solvent: CDCl₃)].

Interestingly, compound 2 and 10 are closely related to clavicipitic acid $(11)^{19}$ produced by <u>Claviceps fusiformis</u>.

REFERENCES AND FOOTNOTES

- 1. Synthetic studies on natural products containing oxidized diketopiperazine. I.
- 2. H. Itokawa, Y. Akita, and M. Yamazaki, Yakugaku Zasshi, 93, 1251 (1973).
- H. Nagasawa, A. Isogai, K. Ikeda, S. Sato, S. Murakoshi, A. Suzuki and S. Tamura, Agric. Biol. Chem., 39, 1901 (1975).
- 4. A. Dossena, R. Marchelli and A. Pochini, J. C. S. Chem. Commun., 771 (1974); R. Marchelli,
 A. Dossena, A. Pochini and E. Dradi, J. C. S. Perkin I, 713 (1977).
- 5. R. Cardillo, C. Fuganti, D. Chiringhelli and P. Grasseli, J. C. S. Chem. Commun., 778 (1975)
- 6. S. Inoue, N. Takamatsu and Y. Kishi, Yakugaku Zasshi, 97, 564, 576 (1977).
- Y. Oikawa, T. Yoshioka and O. Yonemitsu, 21th Tennen Yuki Kagobutsu Toronkai (Sapporo), August, 1978 (abstructs pp 22-27).
- For the kinetic deprotonation and regio- and stereospecific alkylation of cyclo(Gly-Pro) Derivative, see: S. Nakatsuka, H. Miyazaki and T. Goto, Nippon Nogei Kagakukai Annual Meeting (Tokyo), April, 1979 (abstructs pp 328).
- 9. K. Tomita, A. Terada and R. Tachikawa, Heterocycles, 4, 733 (1976),
- 10. Recemization occurred during the protection as determined by turn using $Eu(d-TFC)_3$.
- 11. <u>ζZ</u>: nmar (CDC1₃) ppm 1.74 (6H, s). 1.79 (3H, d, J=7Hz), 1.99, 2.15, 3.36 (each 3H, s), 3.77 (1H, d, J=14). 4.13 (1H, d, J=14), 4.51 (1H, q, J=7). 5.02 (1H, d, J=14), 4.95-5.20 (2H, m) 5.21 (1H, d, J=14), 5.49 (2H, s), 6.22 (1H, dd, J=11 and 18), 7.00-7.45 (4H, m), 7.75 (1H, s); λ_{max} (MeOH) nm (logε) 223 (4.52), 283 (sh), 293 (sh), 322 (4.12).
- 12. <u>ζE</u>: nmr (CDCl₃) ppm 1.65 (6H, s), 1.74 (3H, d, J=7Hz), 1.96, 2.28, 3.30 (each 3H, s), 4.18 (1H, d, J=14), 4.33 (1H, q, J=7), 4.68 (1H, d, J=14), 4.80 (1H, d, J=14), 5.00-5.16 (2H, m), 5.10 (1H, d, J=14), 5.42 (1H, d, J=11), 5.46 (1H, d, J=11), 6.22 (1H, dd, J=10 and 18), 6.97 (1H, s), 7.0-7.4 (4H, m); λ_{max} (MeOH) nm (logε) 226 (4.59), 267 (4.14), 330 (3.82).
- 13. NOE experiment [10% NOE was observed on one of the N-CH₂SCH₃ of ZE by irradiation at the vinyl proton (H-8)] and the deshielding effect¹⁴ of the carbonyl group on the vinyl proton of ZZ also support this conclusion. Exposure of the solution of ZZ in CH₂Cl₂ to visible light (500W tungusten lamp) at room temp for 24 h gave ca 3:1 mixture of ZZ and ZE:¹⁵ the same reaction mixture was also obtained from ZE.
- 14. K. W. Blake and P. G. Sammes, J. Chem. Soc., 980 (1970); A. R. Frasca and E. B. Dennler, Chem. Ind., 509 (1967).
- Recently a similar isomerization was reported in roquefortin [P. M. Scott, J. Polonsky and M. A. Merrien, J. Agric. Food Chem., <u>27</u>, 201 (1979)].
- 16. The products were N-monohydroxymethyl derivatives of $\frac{82}{2}$ and $\frac{9}{2}$ in this stage.
- 17. Some physical data of $\frac{1}{5}$ reported in Ref. 2 and 4 differ from those in Ref. 3; the former data may be erroneous.
- 18. 1: m/e 323, 254: ν (KBr) cm⁻¹ 3460, 1685, 1635; λ (MeOH) nm (logε) 223 (4.48), 283 (3.94), 289 (3.93), 335 (4.02); nmr (DMSO-d₆) ppm 1.38 (3H, d, J=7Hz), 1.49 (6H, s), 4.13 (1H, q, J=7), 4.89-5.02 (2H, m), 6.02 (1H, dd, J=10 and 18), 6.84 (1H, s), 6.9-7.4 (4H, m), 8.24, 8.54, 10.94 (each 1H, br.s).
- 19. J. E. Robers and H. G. Floss, Tetrahedron Lett., 1857 (1969); G. S. King, P. G. Mantle, C. A.Szezyrbak and E. S. Waight, Tetrahedron Lett., 215 (1973).

(Received in Japan 5 April 1980)